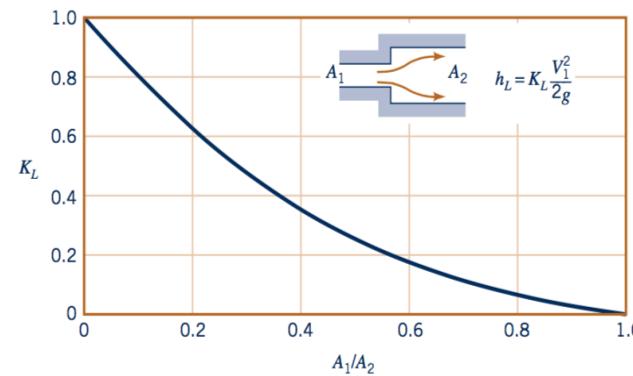


■ Table 8.2


Loss Coefficients for Pipe Components ($h_L = K_L \frac{V^2}{2g}$) (Data from Refs. 5, 10, 27)

Component	K_L	
a. Elbows		
Regular 90°, flanged	0.3	
Regular 90°, threaded	1.5	
Long radius 90°, flanged	0.2	
Long radius 90°, threaded	0.7	
Long radius 45°, flanged	0.2	
Regular 45°, threaded	0.4	
b. 180° return bends		
180° return bend, flanged	0.2	
180° return bend, threaded	1.5	
c. Tees		
Line flow, flanged	0.2	
Line flow, threaded	0.9	
Branch flow, flanged	1.0	
Branch flow, threaded	2.0	
d. Union, threaded	0.08	
e. Valves		
Globe, fully open	10	
Angle, fully open	2	
Gate, fully open	0.15	
Gate, $\frac{1}{4}$ closed	0.26	
Gate, $\frac{1}{2}$ closed	2.1	
Gate, $\frac{3}{4}$ closed	17	
Swing check, forward flow	2	
Swing check, backward flow	∞	
Ball valve, fully open	0.05	
Ball valve, $\frac{1}{2}$ closed	5.5	
Ball valve, $\frac{3}{4}$ closed	210	

*See Fig. 8.32 for typical valve geometry.

■ Figure 8.26
Loss coefficient for a sudden contraction (Ref. 10).

■ Figure 8.27
Loss coefficient for a sudden expansion (Ref. 10).